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A N A L Y S I S  OF T W I S T E D  F R E E - C O N V E C T I V E  F L O W S  
I N D U C E D  BY H E A T  S O U R C E S  

V. N. Korovkin and A. P. Andrievskii UDC 536.25 

Resul ts  o f  numerical  simulation o f  the development  o f  a laminar twisted axisymmetr ic  free-convect ive  jet  

above a point heat source are presented. Specific features  o f  velocity and temperature profiles as a funct ion  

o f  the Prandtl  number  are presented. It is f o u n d  that their interaction has a nonlinear character. Detailed 

tables o f  numerical  solutions are given. Global extrema of  the problem are determined. 

Introduction. Free-convective flows induced by heat sources are of much interest in engineering since they 

occur frequently in industry, technological processes, and nature. Thus, the constant attention of specialists to the 

study of this problem, which is expressed in the appearance of a great number of computational-experimental 

papers, is understandable (the state-of-the-art and a review of the literature in this field are presented in [1 ]). 

However, whereas the specific features of the velocity and temperature fields in non-twisted free-convective jets 

have been studed rather thoroughly, the characteristics of heat transfer in the pres,mce of flow twisting have 

received comparatively little attention [2-5 ]. Information about the structure of these flows bears, for example, a 

direct relation to the design of some power units, in which elements rotating under unfavorable thermal conditions 

must often be cooled to maintain an economically acceptable lifetime for the units. 

This paper presents results of a comprehensive numerical study of the hydrodynamics and heat transfer 

in a twisted axisymmetric free-convective jet within the framework of the model of a laminar boundary layer in the 

Boussinesq approximation at different Prandtl numbers (0.01 _< Pr _< 100). 

Basic Equations. We consider a twisted axisymmetric flow induced by a point heat source of intensity Q0 

thal rotates with a constant angular velocity. We use a cylindrical system of coordinates x, y, ~ with the 

corresponding velocity components u, v, w. The origin of the system coincides with the position of the point source, 

and the x axis is directed vertically upward. All properties of the liquid, except for the density, are taken to be 

constant. Then the basic equations describing the vertical jet flow are wrtitten as 

U ~x + V'~y = - -fi O--~ + y ~y Y + g~ ( T - Too), 

0 0 
(yu) + ~ (yv) = O, 
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Ou OT 
y = O :  v -  Oy Oy w = O  

y ~ o o :  u ~ O ,  T ~ T ~ ,  w ~ O ,  P ~ P ~ .  

(2) 

The law of energy conservation requires that at any x > 0 the energy transferred by convection be equal 

to the energy Q0 liberated by the point source: 

Qo = 2.,-r f PCouATydy = const .  (3) 
o 

Now, two different problems may be considered within the framework of Eqs. (1)-(3). In the first case it 

is assumed that the circulation of the azimuthal velocity component F (F = yw) is equal to zero at the outer boundary 

of the jet (y --~ oo: F --, 0). Then,  along with equality (3) one more integral condition appears,  namely,  the law of 

angular -momentum conservation for the flow: 

L 0 = 2..7r ~ puwy2dy = const .  (4) 
0 

The second case is characterized by the fact that the circulation of the azimutal velocity component is 

constant and differs from zero at large distances from the jet axis: 

y --, oo : yw -~ 2,-rF 0 = const ~ 0 .  (5) 

In other words, in stipulating (5) the distribution of w in the outer region corresponds to a free vortex 

(w - 1/y).  The first problem, starting from the basic work of L. G. Loitsyanskii [1 ], is called a classical twisted 

jet; the second problem relates directly to modeling such intriguing natural phenomena as convective vortices, 

waterspouts, tornadoes, etc. 

We embark on a solution of problem (I) - (4) .  Introducing the stream function ~0 by the formulas u = 

(1/y)(dVd/dy), v = ( - l /y ) (Ovp/Ox)  and passing over to the new variables 

( ~flQ0 / 1 / 2  Q0 -1 
. : ) : 

LO ( gflQ02] l /4  ] 1 / 2  2 - 3 / 2  g~QO Y 
w = - -  - -  b (rl) x ' r l :  ~ p C p  ] - - '  

4~, [~,cp,, ) 1 v 2, x 

we obtain the basic equations in the form (a prime denotes a derivative with respect to r/) 

(6) 

. 1 . 1 1 1 
rlf'" + f + f f + h = 0 ,  ~r (rlh')' + ~ fh' + ~ f '  h 

�89 l l 
,lb" + b' + /b '  + ~ f ' b  - U b ( l  - f )  = O , 

= 0 ,  

(7) 

which must be integrated under the following conditions: 

, l : o :  f = , ~ f ' :  4 ~ h  = b :  o,  

r/ = ~ :  f = h = b = O ,  (8) 

270 



TABLE 1. Compar i son  of Values of f (0, Pr) 

Pr  I71 [8 1 [91 131 [ 11 1 Present  work 

0.01 

0.03 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

O.73 

1 

2 

3 

5 

6.7 

7 

10 

30 

50 

100 

0.380 

1.327 

1.414 

1.580 

1.984 

0.3715 

0.55450 

0.82320 

1.10774 

1.32629 

1.41421 

1.58113 

1.67973 

1.80667 

1.98184 

2.25559 

2.53690 

m 

1.4142 

1.5812 

1.8065 

1.9819 

0.3697 

0.6606 

0.8232 

1.2409 

1.3370 

1.4146 

1.5811 

1.8068 

1.8808 

1.9825 

2.3773 

2.5368 

1.3265 

m 

n 

m 

1.8908 

2.3767 

2.5368 

0.369494 

0.554503 

0.660663 

0.823208 

1.107747 

1.240972 

1.326290 

1.333325 

1.336768 

1.414214 

1.581139 

1.679740 

1.806687 

1.880462 

1.891541 

1.981849 

2.255593 

2.377851 

2.536915 

In the second case,  a ssuming  

we have 

where the bounda ry  condi t ions  are  

f f 'hdr  1 = 1, f 'brll/2drj = 1. 
o 0 

/ ~Qo2/1/4 
- 1 / 2  

w = JrF 0 - -  b (r/,) x 
~:r#Cpv ) 

(9) 

r l b . + b , + l f b , _  1 b (1 - f) = O, (10) 

b ( O ) = O ,  lim v ~ - b =  1. (11) 
r ] ~ o c  

It should be noted that  in the notat ion of Eqs. (7) the term OP/Ox in the first equali ty of sys tem (1) is 

omit ted since the laws of d iminut ion of the axial  and  azimuthal  velocity components  are  different .  In o ther  words,  

in what  follows, a se l f -s imi lar  flow mode occurr ing at some dis tance from the source is ana lyzed .  From the physical  

point of view solut ions (6), (q) reflect "elaborat ion" of geometr ical ly s imi lar  profiles of velocity and t empera tu re  in 

~pace when x --, do which is a common proper ty  for the jet process considered.  

Results  of Calculat ion.  A specific feature  of the obta ined  nonl inear  system of equations is its s ingular i ty  at 

(he point r/ = O, which makes it necessary  to use as the initial value of the variable not zero, but a value close to 

it; in this case the bounda ry  condi t ions should also be a l tered on the basis of expans ion  of the function into Ihc 
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TABLE 2. Comparison of Values of h(0, P r ) / P r  

Pr  [71 [8 ] [9 1 [31 [ 11 I Present work 

0.01 

0.03 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

0.73 

1 

2 

3 

5 

6.7 

7 

10 

30 

50 

100 

0.759 

0.687 

0.667 

0.625 

0.561 

0.8084 

0.79193 

0.77287 

0.73473 

0.68874 

0.66667 

0.62500 

0.60420 

0.58313 

0.56268 

0.54309 

0.53133 

m 

0.6666 

0.6252 

0.5806 

0.5630 

0.7994 

0.7859 

0.7728 

0.7084 

0.6864 

0.6670 

0.6249 

0.5831 

0.5736 

0.5630 

0.5370 

0,5325 

0.6894 

0.5724 

0.5376 

0.5318 

0.798629 

0.791936 

0.785955 

0.772883 

0.734731 

0.708459 

0.688735 

0.687022 

0.686184 

0.666667 

0.625000 

0.604196 

0.583135 

0.573489 

0.572181 

0.562680 

0.543087 

0.537250 

0.531330 

Taylor  series (just this scheme is used in [7-11 ]). But this creates difficulties in numerical integration of the 

problem and leads to some loss of accuracy for the results obtained. An alternative approach that provides more 

reliable numerical data is suggested in I1 I. It consists in replacement of the equations involving the singularity by 

an equivalent system not containing singularities. In our case this is performed by passing from the variable r/ to 

the variable ~ by the formula ~ = In r]. Then,  the boundary-value problem for different values of Pr was transformed 

to a Cauchy problem that was solved by the s tandard  R u n g e - K u t t a  method. Missing initial conditions were 

determined by conjugating the iterative numerical solution via an initial boundary condition. To determine the 

accuracy of the computational scheme a series of test solutions were conducted for Prandtl  numbers  equal to 1 and 

2. Good agreement between the results of the calculations and the previously known analytical solutions [2, 4, 12 1 

Pr = 1 : f(~o) = 6 ,  f ' ( 0 )  = ' / 2 - ,  h (0 )  = 2 / 3 ,  d ' ( 0 )  = v"2-/3; 

Pr = 2 f(oo) = 4 ,  / " ( 0 )  = x / 5 / 2  , h (0 )  = 5 / 4 ,  

F(oo) = 0 :  d ' ( 0 )  = x /45 /128  , F(oo) = const ~ :0"  d ' ( 0 )  = x / 5 / 3 2  

was a positive result of this test. Tables 1-4 present data on the basic hydrodynamic and thermal parameters of 
lhe jet process 

t~x 1 I J 2 
m _ 2.Trf(oo) x - f ' ( r / ) G r  x ' v 2 

gflATx 3 1 gt~JQo x2 
3 - h (r]) Gr.~, Or~ - 3 

v 2 .~rp Cpv 
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TABLE 3. Comparison of Values of [(oo, Pr) 

P r  

0.01 472.69 

0.03 

0.05 

0.I 

0.3 

0.5 

0.7 7.53 

0.72 

0.73 

1 6.00 

2 4.00 

3 

5 

6.7 

7 

10 2.67 

30 

50 

100 

[71 I8 [91 I31 [10l I141 Present work 

374.97 

172.21 

53.33 

17.75 

8.07 

5.96 

3.97 

3.53 

3.32 

3.18 

3.11 

3.09 

m 

m 

D 

6.000 

4.000 

3.398 

3.309 

540 

108.3 

54.6 

11.17 

7.85 

6.00 

4.00 

3.39 

3.35 

3.30 

3.25 

3.25 

8.062 

6.000 

4.000 

3.375 

3.143 

7.91 

3.08 

546.6 

182.3 

109.43 

54.79 

18.40 

11.18 

8.15 

7.95 

7.85 

6.00 

4.00 

3.60 

3.40 

3.35 

3.34 

3.31 

3.275 

3.27 

3.268 

TABLE 4. Comparison of Values of d'(0, Pr) 

Pr F(oo)=0  F(oo) =const  ;~ 0 

[21 [31 Present work [41 [31 Present work 

0.01 

0.03 

0.05 

0.1 

0.3 

0.5 

0.7 

0.72 

0.73 

1 

2 

3 

5 

6.7 

7 

10 

30 

50 

100 

0.4714045 

0.5929271 

0.09454 

0.17262 

0.21886 

0.36912 

0.42142 

0.47171 

0.59207 

0.61904 

0.59573 

0.55240 

0.41532 

0.37996 

0.094487 

0.143444 

0.172433 

0.218915 

0.313080 

0.369858 

0.414856 

0.418972 

0.421010 

0.471405 

0.592927 

0.631827 

0.620267 

0.594426 

0.589997 

0.552077 

0.450031 

0.415394 

0.378529 

w 

w 

D 

0.4714045 

0.3952847 

0.17576 

0.30445 

0.37035 

0.48310 

0.48451 

0.47124 

0.39527 

0.27384 

0.24618 

0.21677 

0.15389 

0.13993 

0.175765 

0.259048 

0.304708 

0.370194 

0.461441 

0.483763 

0.485239 

0.484766 

0.484498 

0.471405 

0.395285 

0.336492 

0.273623 

0.245997 

0.242346 

0.216606 

0.167442 

0.153444 

0.139210 
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As should be expected, with an increase in Pr the rate of rotational motion in the jet, which can be characterized 

by d'(O), becomes weaker (d(r/) = r/V2b(r/)). An important effect of buoyancy forces consists in a nonmonotonic 

dependence for d'(O), namely, up to a certain Prandtl number the numerical value of d'(0) grows, and then it 

decreases. The latter is typical of both modes of jet flow. At the same time there are substantial differences: in the 

case (4) the threshold Prandtl number lies within the interval (2; 5); and for the mode (5) within the interval (0.5; 

0.72). This result is a direct consequence of the "competition" between the velocity and temperature fields in flows 

induced by heat sources. Therefore, additional studies were conducted that were directed at the determination of 

threshold values of Pr. It was found that for a twisted jet, in which F' = 0, d'(0) has a maximum equal to 0.634741 

and the latter is attained at Pr. = 3.475: 

f ( ~ ) = 3 . 5 1 9 ,  / ' ( 0 ) =  1.715965, h(0)  =2.076478.  

If the jet generated by the point heat source is twisted so that the circulation of the azimuthal velocity 

component at its outer boundary is a constant value different from zero, then d'(0) = 0.486172 and Pr. -- 0.617: 

/ ( ~ )  = 9 . 1 6 2 ,  f ' ( 0 )  = 1.294563, h(0)  =0.429622.  

When Pr >> Pr. or Pr << Pr., the situation changes: buoyancy forces suppress the effects of rotation, with 

this result being more substantial in the range of small Prandtl numbers. And, finally, as regards the details of 

the free-convective flow studied, we note that at Pr. = 0.36048, the relative profiles of the axial velocity and 

temperature coincide. At other values of Pr the profiles of AT are "wider" than u when Pr < Pr. and "narrower" 

when Pr > Pr.. As is known [13 ], in a plane free-convective jet the ratio of the thicknesses of the dynamic and 

temperature layers is equal to unity at Pr. = 5/9 --- 0.55556. 

N O T A T I O N  

u, v, w, components of the velocity vector; x, y, ~o, cylindrical coordinates; P, pressure; T, temperature; v, 

~, kinematic and dynamic viscosities; p, density; Pr, Prandtl number; Cp, heat capacity at constant pressure; g, 

acceleration of gravity; fl, coefficient of volumetric thermal expansion; Gr x, local Grashof number; F = yw, 

circulation of w. 
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