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ANALYSIS OF TWISTED FREE-CONVECTIVE FLOWS
INDUCED BY HEAT SOURCES

V. N. Korovkin and A. P. Andrievskii UDC 536.25

Results of numerical simulation of the development of a laminar twisted axisymmetric free-convective jet
above a point heat source are presented. Specific features of velocity and temperature profiles as a function
of the Prandil number are presented. It is found that their interaction has a nonlinear character. Detailed
tables of numerical solutions are given. Global extrema of the problem are determined.

Introduction. Free-convective flows induced by heat sources are of much interest in engineering since they
occur frequently in industry, technological processes, and nature. Thus, the constant attention of specialists to the
study of this problem, which is expressed in the appearance of a great number of computational-experimental
papers, is understandable (the state-of-the-art and a review of the literature in this field are presented in [1]).
However, whereas the specific features of the velocity and temperature fields in non-twisted free-convective jets
have been studed rather thoroughly, the characteristics of heat transfer in the presence of flow twisting have
received comparatively little attention [2-5]. Information about the structure of these flows bears, for example, a
direct relation to the design of some power units, in which elements rotating under unfavorable thermal conditions
must often be cooled to maintain an economically acceptable lifetime for the units.

This paper presents results of a comprehensive numerical study of the hydrodynamics and heat transfer
in a twisted axisymmetric free-convective jet within the framework of the model of a laminar boundary layer in the
Boussinesq approximation at different Prandtl numbers (0.01 < Pr < 100).

Basic Equations. We consider a twisted axisymmetric flow induced by a point heat source of intensity Qg
that rotates with a constant angular velocity. We use a cylindrical system of coordinates x, y, ¢ with the
corresponding velocity components u, v, w. The origin of the system coincides with the position of the point source,
and the x axis is directed vertically upward. All properties of the liquid, except for the density, are taken to be
constant. Then the basic equations describing the vertical jet flow are wrtitten as
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The law of energy conservation requires that at any x > 0 the energy transferred by convection be equal
to the energy Qg liberated by the point source:

Q=2 prpuATydy = const . (3
0

Now, two different problems may be considered within the framework of Egs. (1)-(3). In the first case it
is assumed that the circulation of the azimuthal velocity compoaent I' (I' = yw) is equal to zero at the outer boundary
of the jet (y » «: I' = 0). Then, along with equality (3) one more integral condition appears, namely, the law of
angular-momentum conservation for the flow:

Ly=2r J puwy’dy = const . (4)
0

The second case is characterized by the fact that the circulation of the azimutal velocity component is
constant and differs from zero at large distances from the jet axis:

y=>o: yw- 2l = const = 0. &)

In other words, in stipulating (§) the distribution of w in the outer region corresponds to a free vortex
(w ~1/y). The first problem, starting from the basic work of L. G. Loitsyanskii 1}, is called a classical twisted
jet; the second problem relates directly to modeling such intriguing natural phenomena as convective vortices,
waterspouts, tornadoes, etc.

We embark on a solution of problem (1)-(4). Introducing the stream function y by the formulas u =
(1/y)(ay/dy), v=(—1/y)(oy/3dx) and passing over to the new variables
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we obtain the basic equations in the form (a prime denotes a derivative with respect to n)
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which must be integrated under the following conditions:
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TABLE 1. Comparison of Values of f (0, Pr)

Pr (71 81 9] [3} [11] Present work
0.01 0.380 0.3715 - 0.3697 - 0.369494
0.03 - 0.55450 - - - 0.554503
0.05 - - - 0.6606 - 0.660663
0.1 - 0.82320 - 0.8232 - 0.823208
0.3 - 1.10774 - - — 1.107747
0.5 — - - 1.2409 - 1.240972
0.7 1.327 1.32629 - - 1.3265 1.326290
0.72 - - - - -~ 1.333325
0.73 - - - 1.3370 - 1.336768

1 1.414 1.41421 1.4142 1.4146 - 1.414214

2 1.580 1.58113 1.5812 1.5811 - 1.581139

3 - 1.67973 - - - 1.679740

5 - 1.80667 1.8065 1.8068 - 1.806687
6.7 - - - 1.8808 - 1.880462

7 - - - - 1.8908 1.891541

10 1.984 1.08184 1.9819 1.9825 - 1.981849
30 - 2.25559 - - - 2.255593
50 - - - 2.3773 2.3767 2.377851
100 - 2.53690 - 2.5368 2.5368 2.536915

[fhdn=1, [rom' Pap=1.
0 0
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where the boundary conditions are
b()=0, lim Vg b=1. (11

Uik

It should be noted that in the notation of Eqs. (7) the term dP/dx in the first cquality of system (1) is
omitted since the laws of diminution of the axial and azimuthal velocity components are different. In other words,

in what follows, a self-similar flow mode occurring at some distance from the source is analyzed. From the physical
point of view solutions (6), (9) reflect “elaboration” of geometrically similar profiles of velocity and temperature in
space when x = o, which is a common property for the jet process considered.

Results of Calculation. A specific featurc of the obtained nonlinear system of cquations is its singularity at

the point 7 = 0, which makes it necessary to use as the initial valuc of the variable not zero, but a value close to
it; in this case the boundary conditions should also be altered on the basis of expansion of the function into the
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TABLE 2. Comparison of Values of #(0, Pr)/Pr

Pr [7] [8] 91 31 [11) Present work
0.01 0.759 0.8084 - 0.7994 - 0.798629
0.03 - 0.79193 - - - 0.791936
0.05 - - - 0.7859 - 0.785955

0.1 - 0.77287 - 0.7728 - 0.772883

0.3 - 0.73473 - - - 0.734731

0.5 - - - 0.7084 - 0.708459

0.7 0.687 0.68874 - - 0.6894 0.688735
0.72 - - - - - 0.687022
0.73 - - - 0.6864 - 0.686184

0.667 0.66667 0.6666 0.6670 - 0.666667

2 0.625 0.62500 0.6252 0.6249 - 0.625000
3 - 0.60420 - - - 0.604196
S - 0.58313 0.5806 0.5831 - 0.583135
6.7 - - - 0.5736 - 0.573489
7 - - - - 0.5724 0.572181

10 0.561 0.56268 0.5630 0.5630 - 0.562680

30 - 0.54309 - - - 0.543087

50 ~ - - 0.5370 0.5376 0.537250

100 - 0.53133 - 0.5325_k 0.5318 0.531330

Taylor series (just this scheme is used in [7-11]). But this creates difficulties in numerical integration of the
problem and leads to some loss of accuracy for the results obtained. An alternative approach that provides more
reliable numerical data is suggested in [1]. It consists in replacement of the equations involving the singularity by
an equivalent system not containing singularities. In our case this is performed by passing from the variable 5 to
the variable £ by the formula £ = In . Then, the boundary-value problem for different values of Pr was transformed
to a Cauchy problem that was solved by the standard Runge—Kutta method. Missing initial conditions were
determined by conjugating the iterative numerical solution via an initial boundary condition. To determine the
accuracy of the computational scheme a series of test solutions were conducted for Prandtl numbers equal to 1 and
2. Good agreement between the results of the calculations and the previously known analytical solutions (2, 4, 12]

Pr=1: f(o)=6, f(0)=VZ, h(0)=2/3, d (0)=VI/3;
Pr=2: f(eo)=4, [ (0)=V 5/2, h(0)=15/4,

T(0)=0: 4 (0)=V45/128, I'(w)=const #0: d (0)=V 5/32

was a positive result of this test. Tables 1-4 present data on the basic hydrodynamic and thermal parameters of
the jet process
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TABLE 3. Comparison of Values of f(, Pr)

Pr (7] (8 9] 3] (10] [14] Present work
0.01 472.69 374.97 - 540 - 546.6
0.03 - 172.21 - - - 182.3
0.05 - - - 108.3 - 109.43
0.1 - 53.33 - 54.6 - 54.79
0.3 - 17.75 - - - 18.40
0.5 - - - 11.17 - 11.18
0.7 7.53 8.07 - - - 7.91 8.15
0.72 - - - - 8.062 7.95
0.73 - - - 7.85 - 7.85

1 6.00 5.96 6.000 6.00 6.000 6.00

2 4.00 3.97 4.000 4.00 4.000 4.00

3 - 3.53 - - - 3.60

5 - 3.32 3.398 3.39 3.375 3.40
6.7 - - - 3.35 - 3.35

7 - - - - - 3.08 3.34
10 2.67 3.18 3.309 3.30 3.143 3.31
30 -~ 3.11 - - - 3.275
50 - - - 3.25 - 3.27
100 - 3.09 - 3.25 - 3.268

TABLE 4. Comparison of Values of d'(0, Pr)
Pr I'()=0 () =const = 0
[2] (3] Present work (4] (3] Present work

0.01 - 0.09454 0.094487 - 0.17576 0.175765

0.03 - - 0.143444 - - 0.259048

0.05 - 0.17262 0.172433 - 0.30445 0.304708

0.1 - 0.21886 0.218915 - 0.37035 0.370194

0.3 - - 0.313080 - - 0.461441

0.5 - 0.36912 0.369858 - 0.48310 0.483763

0.7 - - 0.414856 - - 0.485239

0.72 - - 0.418972 - - 0.484766

0.73 - 0.42142 0.421010 - 0.48451 0.484498

1 0.4714045 0.47171 0.471405 0.4714045 0.47124 0.471405
2 0.5929271 0.59207 0.592927 0.3952847 0.39527 0.395285
3 - - 0.631827 - - 0.336492
N) - 0.61904 0.620267 - 0.27384 0.273623

6.7 - 0.59573 0.594426 - 0.24618 0.245997

7 - - 0.589997 - - 0.242346
10 - 0.55240 0.552077 - 0.21677 0.216606
30 - - 0.45003! - - 0.167442
50 - 0.41532 0.415394 - 0.15389 0.153444
100 - 0.37996 0.378529 - 0.13993 0.139210
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As should be expected, with an increase in Pr the rate of rotational motion in the jet, which can be characterized
by d'(0), becomes weaker (d(n) = r;Vlb(r;)). An important effect of buoyancy forces consists in a nonmonotonic
dependence for 4'(0), namely, up to a certain Prandtl number the numerical value of 4'(0) grows, and then i
decreases. The latter is typical of both modes of jet flow. At the same time there are substantial differences: in the
case (4) the threshold Prandtl number lies within the interval (2; 5); and for the mode (5) within the interval (0.5;
0.72). This result is a direct consequence of the "competition” between the velocity and temperature fields in flows
induced by heat sources. Therefore, additional studies were conducted that were directed at the determination of
threshold values of Pr. It was found that for a twisted jet, in which U = 0, 4"(0) has a maximum equal to 0.63474]
and the latter is attained at Pr, = 3.475:

f(®)=3.519, f (0)=1.715965, h(0)=2.076478.

If the jet generated by the point heat source is twisted so that the circulation of the azimuthal velocity
component at its outer boundary is a constant value different from zero, then d'(0) = 0.486172 and Pr. = 0.617:

() =9.162, 7 (0) = 1294563, h (0) = 0.420622 .

When Pr >> Pr, or Pr << Pr,, the situation changes: buoyancy forces suppress the effects of rotation, with
this result being more substantial in the range of small Prandtl numbers. And, finally, as regards the details of
the free-convective flow studied, we note that at Pr, = 0.36048, the relative profiles of the axial velocity and
temperature coincide. At other values of Pr the profiles of AT are "wider” than u when Pr < Pr, and "narrower”
when Pr > Pr,. As is known [13], in a plane free-convective jet the ratio of the thicknesses of the dynamic and
temperature layers is equal to unity at Pr, = 5/9 = 0.55556.

NOTATION

u, v, w, components of the velocity vector; x, y, ¢, cylindrical coordinates; P, pressure; T, temperature; v,
u#, kinematic and dynamic viscosities; p, density; Pr, Prandtl number; Cp, heat capacity at constant pressure; g,

acceleration of gravity; 8, coefficient of volumetric thermal expansion; Gry, local Grashof number; I' = yw,
circulation of w.
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